منابع مشابه
Location-Aware Music Artist Recommendation
Current advances in music recommendation underline the importance of multimodal and user-centric approaches in order to transcend limits imposed by methods that solely use audio, web, or collaborative filtering data. We propose several hybrid music recommendation algorithms that combine information on the music content, the music context, and the user context, in particular integrating geospati...
متن کاملLocation-Aware and Personalized Recommendation
Collaborative Filtering (CF) is widely employed for making Web service recommendation. CF-based Web service recommendation aims to predict missing QoS (Quality-of-Service) values of Web services. Although several CF-based Web service QoS prediction methods have been proposed in recent years, the performance still needs significant improvement. Firstly, existing QoS prediction methods seldom con...
متن کاملListener-aware Music Search and Recommendation
Ubiquitous systems for music search, retrieval, and recommendation are recently receiving a considerable amount of attention, both in academia and industry. This is evidenced not least by the emergence of novel music streaming services and the respective availability of millions of music pieces, which have become easily accessible at the user’s fingertips, anywhere and anytime. In this keynote,...
متن کاملListener-Aware Music Recommendation from Sensor and Social Media Data
Music recommender systems are lately seeing a sharp increase in popularity due to many novel commercial music streaming services. Most systems, however, do not decently take their listeners into account when recommending music items. In this note, we summarize our recent work and report our latest findings on the topics of tailoring music recommendations to individual listeners and to groups of...
متن کاملContent-Aware Collaborative Music Recommendation Using Pre-trained Neural Networks
Although content is fundamental to our music listening preferences, the leading performance in music recommendation is achieved by collaborative-filtering-based methods which exploit the similarity patterns in user’s listening history rather than the audio content of songs. Meanwhile, collaborative filtering has the well-known “cold-start” problem, i.e., it is unable to work with new songs that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Multimedia Information Retrieval
سال: 2013
ISSN: 2192-6611,2192-662X
DOI: 10.1007/s13735-012-0032-2